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ABSTRACT 

A Lagrangean-type numerical forecasting method is developed in which the computational (grid) points are ad- 
vected by the wind and the necessary space derivatives (in the pressure gradient terms, for example) are computed 
using the values of the variables a t  all the computation points that a t  the particular moment are within a prescribed 
distance of the point for which the computation is done. In  this way, the forecasting problem reduces t o  solving the 
ordinary differential equations of motion and thermodynamics for each computation point, instead of solving the 
partial differential equations in the Eulerian or classical Lagrangean way. The method has some advantages over the 
conventional Eulerian scheme: simplicity (there are no advection terms), lack of computational dispersion in the, 
advection terms and therefore better simulation of atmospheric advection and deformation effects, very little incon- 
venience due to the spherical shape of the earth, and the possibility for a variable space resolution if desired. On the 
other hand, some artificial smoothing may be necessary, and it may be difficult (or impossible) to  conserve the global 
integrals of certain quantities. 

A more detailed discussion of the differencing scheme used for the time integration is included in a separate sec- 
tion. This is the scheme obtained by linear extrapolation of computed time derivatives to a time value of to  + aAt where 
to is the value of time at the beginning of the considered time step At and where a is a parameter that can be used to  
control the properties of the scheme. When choosing a value of a between % and 1, a scheme is obtained that damps the 
high-frequency motions, in a similar way as the Matsuno scheme, but needs somewhat less computer time and, with 
the same damping intensity, has a higher accuracy for low-frequency meteorologically significant motions. 

Using the described method, a 4-day experimental forecast has been made, starting with a stationary Haurwita- 
Neamtan solution, for a primitive equation, global, and homogeneous model. The final geopotential height map 
showed no visible phase errors and only a modest accumulation of truncation errors and effects of numerical smoothing 
mechanisms. Two shorter experiments have also been made to  analyze the effects of space resolution and damping in 
the process of time differencing. It is felt that the experimental results strongly encourage further testing and inves- 
tigation of the proposed method. 
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1. INTRODUCTION AND FORMULATION 
OF THE METHOD 

Ever since the beginning of the development of modern 
meteorology, Lagrangean methods have had a strong 
appeal to theoretical meteorologists. The laws of motion 
and thermodynamics relate the forces and heating to the 
individual derivatives of velocity components and po- 
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tential temperature; and in this way, the Lagrangean 
approach is the most fundamental one. Nevertheless, due 
to practical reasons, during the last two decades of 
extensive research in numerical prediction and atmos- 
pheric general circulation experimentation, the Eulerian 
method of formulating and solving the relevant atmos- 
pheric equations has been used almost exclusively. There 
has been only a modest number of attempfs to use a 
Lagrangean or a quasi-Lagrangean technique. Graphical 
forecasting methods are essentially Lagrangean (Fjgrtoft 
1952, 1955); however, their use has diminished with the 
easier availability of fast digital computers. Anf example 
in the paper by Welander (1955) illustrates the major 
difficulty to be expected in trying to perform a numerical 
forecast with the use of the classical Lagrangean appradch : 
a chessboard set of fluid elements soon deforms into a 
highly irregular pattern, unsuitable for space differentia- 
tion along the originally straight material lines. Thus, 
frequent redefinition of the material coordinate lines 
would be necessary. Besides, the computational complexity 
of this approach appears to be considerable; see, for 
example, the analysis by Wiin-Nielsen (1959). 

To avoid these problems or for other reasons, a number 
of investigators have used the Lagrangean formulation of 
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the advection terms only (qkland 1962, Krishnamurti 
1962, Leith 1965). In  this way, an advective change at  
a space-fixed grid point and in a particular time step 
is essentially obtained by finding the location of the 
parcel that mill in this time step be carried by the flow 
to the grid point and by computing the corresponding 
individual value through space interpolation. Since by 
this procedure a space interpolated value is advected a t  
each grid point and time step, i t  is not clear whether the 
method has any Lagrangean-type advantages, It does 
represent a simple possibility to avoid the “nonlinear” 
computational instability; however, it is questionable 
whether the gain in simplicity, as compared to  the more 
involved application of the Arakawa (1966) concept of 
maintaining the integral constraints of physical im- 
portance, will often be of more value than the advantages 
of the latter alternative. In  fact, it has likely been to a 
rather large estent due to the wide application of the 
Arakama conservation schemes that the remarka,ble 
achievements in atmospheric simulation experiments have 
been accomplished in recent years. Besides, other less 
refined possibilities to overcome t’he nonlinear instability 
problem also exist. 

Despite this outstanding performance of the present 
day Eulerian methods, they do contain a number of 
intrinsic deficiencies. It appears convenient to mention 
them briefly: 

No attempt can be made to conserve, within advection terms, 
individual properties following the motion of air particles. That  is, 
n false dispersion of the wave components of the flow is produced 
t ) y  the finite-difference formulation of the advection terms (Wurtelc 
1961, Matsuno 1966b). The error in phase speed of individual waves 
increases cata5trophicallg when the wavelength approaches the 
smallest possible wavelength resolvable by the grid. This precludes 
the formation of sharp gradients of an advected quantity, such as 
the gradients observed in frontal and intertropical convergence 
zones, and smooths out these zones in case that some initially exist. 
Another consequencc of the Eulerian formulation of advection terms 
is that the nicntioned process of elongation, tangling, and subse- 
quent mixing of fluid elements is not realistically sirnulated (DjuriE 
1966). 

It seems futile in Eulerian methods to try alleviating this wave 
dispersion difficulty by having a higher grid resolution in zones of 
sharp gradients. These zones are usually moving and after some 
time would so leave the regions of high resolution. Besides, a space 
discontinuity in grid resolution results in false reflection of waves 
at the boundary separating the two regions. 

The task of defining the locations of grid points on spherical 
earth so as to accomplish a quasi-homogeneous space resolution, 
though feasible in a number of straight-forward ways, is an uncom- 
fortable one, leading to laborious computational schemes (Kurihara 
and Holloway 1967, Sadourny- et  al. 1968). 

A Eulerian model accepts information a t  predetermined grid- 
point locations only, while the observations are and will be made at 
relatively randomly spaced points. This restriction may be of some 
disadvantage, especially when, as expected, a crucial part of the 
atmospheric observations becomes continuous in time. 

In trying to remedy the leading of the mentioned 
shortcomings, i t  was proposed by Charney (1966) to let the 
grid points move, as if imbedded in some hypothetical 
medium, in such a way that the grid spacing constantly 
adjusts to the gradient of the quantity one wishes to 

. 

resolve. In this way, one would have two simultaneous 
flows: the physical flow of the fluid and the flow of this 
hypo thetical medium. Charney rejected the possibility of 
allowing the two fluids to coincide since, as described 
already, the grid lines moving with the physical flow would 
soon become highly distorted and useless for the com- 
putation of space derivatives. It is suggested here to try the 
other alternative: let the computation points move with 
the physical fluid and, instead, reject the requirement 
for the continuity of their relative position. The necessary 
space derivatives have then to be computed by using the 
values of the variables at  all the computation points that  
a t  the particular moment happen to be in some way 
surrounding the point for which the computation is done. 
Even if they initially are not, after some time, say a 
number of days, these surrounding points will be dis- 
tributed essentially a t  random; it is conceivable that 
this may result in a significant increase in the number of 
computation points necessary to achieve some required 
accuracy in space differencing. But, in return, the 
prognostic equations reduce to a set of ordinary, instead of 
partial, differential equations, with a considerable gain in 
simplicity. Besides, no errors are produced by the finite- 
difference treatment of the advection terins since there 
are no advection terms. 

The proposed method has been tested using a global 
primitive equations model for a homogeneous and incom- 
pressible atmosphere. Following sections describe the 
technical details of the computational procedure as well 
as the results of a number of performed experiments. 
Finally, a comparison of the properties of the method with 
those of the conventional Euleriaii schemes will be given. 

2. SPACE DIFFERENCING 

Throughout this study, we shall deal with a homo- 
geneous, incompressible, and frictionless atmospheric 
model. Although simple, such a niodel contains a sig- 
nificant part of the essential features of the large-scale 
atmospheric motions ; see, for example, the discussion in 
the paper by Arakawa (1970). For these reasons, i t  has 
been used many times to test the performance of the 
numerical finite-diff erence schemes. The most recent 
reference describing such a use is probably the one by 
Grammeltvedt (1969) ; it contains a number of the previous 
ones. As is customary, the pressure change with height is 
assumed in the present study to be given by the hydro- 
static equation. The pressure force is then not a function 
of height; and if the initial wind is independent of height, 
i t  will have to remain so. We shall assume this to be the 
case. We shall further consider earth to be a perfect 
sphere and choose a A, 0, r spherical coordinate system 
with, for later convenience, an arbitrary orientation of the 
O= f 7r/2 axis. Having a shallow atmosphere, we replace 
the radius T with a constant value a, and accordingly 
(Phillips 1966) neglect the vertical velocity terms in the 
equations of horizontal motion. The governing equations 
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then become 

and 

Here, U and V are the horizontal velocity components in 
the directions of constant 0 and constant A, respectively; 
+ is the geopotential of the free surface; t is time; time 
derivatives are individual rates of change, following the 
motion of the fluid; fi is the magnitude of the earth’s 
angular velocity; and p is latitude. We shall further use 
h for longitude and denote by u and v the eastward and 
northward components of the horizontal velocity, 
respectively . 

The problem of space differencing now consists of 
computing the four space derivatives in eq (1). We want to 
do this by making use of the known values of u, v, and + 
a t  the point for which the computation should be per- 
formed, which we shall call the “reference point,” and of 
the values of these variables a t  a number of surrounding 
computation points, which we shall call “neighbors.” 
The space distribution of these points is considered to be 
arbitrary, except for assuming that they are not or- 
ganized in some special inconvenient way (along a line, 
for instance). This distribution is given by the known 
values of their geographical coordinates h ,  cp. For a de- 
fined orientation of the A, 8 system, the components u, v 
and coordinates h ,  cp can be transformed readily, of course, 
into components U, V and coordinates A, e, if this definition 
is such as to make this necessary. 

Now, we may expect that the property of being a 
neighbor has to be a reciprocal one. If it were not, we 
would have a situation in which the values of dependent 
variables a t  a computation point affect the time change 
of those a t  another one, without the opposite being true. 
It would appear that this should lead to an instability of 
the computation; indeed, some test runs support this con- 
clusion. The simplest way of making the property of 
being a neighbor reciprocal is to take as neighbors all the 
computation points which a t  that particular moment 
happen to be within some prescribed distance p of the 
considered reference point ; this possibility has been used 
in the present study. Now, a method for the computation 
of space derivatives will always require a certain minimal 
number of neighbors; to make sure that we always have a t  
least that many neighbors in a computation with a 
randomlike distribution of points, we then have to make 
p such that the average number of neighbors is consider- 
ably greater than this minimal one. I n  this situation, the 

method of least squares offers a straightforward way to 
compute the space derivatives, and it has been used here. 

The accuracy of the least-squares fitting, if performed 
in terms of the geographical coordinates A,  cp, would ob- 
viously break down when approaching the two Poles. 
For avoiding this, the least-squares fitting was done in 
the coordinate system A, 0, which had its origin always in 
the considered reference point, and e= & ~ / 2  axis in its 
meridional plane, with 0 increasing northward. This 
choice of origin has an additional benefit of simplifying 
eq ( l ) ,  in that the three tan 0 terms disappear, if computed 
forward in space. 

The necessary coordinate transformation equations can 
be written in the form 

A = arctan (Y/X) 

e=arctan(Z/JX2+ y2) 

X= cos cpo cos cp cos ( h  - h,) + sin cpo sin cp, 

and 

where 

Y=coscp sin(h--Xo), 

Z= -sin cpo cos cp cos(X--Xo) + cos cpo sin cp, 

0 

and ho, cpo are the geographical coordinates of the refer- 
ence point. Except along the meridian through the refer- 
ence point, the coordinate lines of the A, 8 system, in 
general, make an angle with respect to those of the h, cp 

system. Denoting this angle by P and having it increase 
in the positive direction, we obtain from eq (2) 

sin p=-sin cpo sin(h-Xo)/JX2+Y2 

and (3 1 

cos p=[cos cpo cos cp + sin cpo sin cp C O S ( ~ - A ~ ) ~ / J X ~ + Y ~ .  

The velocity components U, V can then be computed 
making use of the relations 

U=u cos p+v sin P 
and . (4 1 

V=-u sin B+v cos 0. 

After having in this way performed the transformation 
of coordinates A, cp and components u, v into coordinates 
A, e and components U, V, the least-squares fitting was 
done in the experiments reported here by defining 

Here, x stands for any of the variables, U, V, and 4, and 
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xo is the value of x at  the reference point; the five coeffi- 
cients are computed so as to  make 2 differ as little as possi- 
ble, in the least-squares sense, from the values of x a t  the 
individual neighbors. Having, as described, more than five 
neighbors, the two will have to be, in general, different. 
If we wish, we can prescribe some weights w to the squared 
differences a t  the individual neighbors and compute the 
coefficients so as to minimize the sum 

s=2 Wt(X,-;;,)2. 
i = l  

The subscripts here refer to the values of the variables a t  
particular neighbors, the total number of neighbors being 
n. In  the experiments that will be described here, the 
same weight has been prescribed always to all the neigh- 
bors. It might be possible, however, to optimize the 
weights of individual neighbors in some way, say as a 
function of their space distribution or the reliability of the 
x values a t  particular neighbors. 

NOW, obviously, we assume 

(7) 
a) a) au av 
an + ae- --&A , --B+, aK=A,, and - ae --=€I,; 

the computation of space derivatives in eq (1) is in this 
way defined. 

A few words could be added about the choice of the 
neighbor-defining distance p and the search for neighbors. 
Preliminary experiments with the present method have 
shown that a tendency for the appearance of computa- 
tional noise exists, this tendency becoming catastrophic 
with the decrease in p. This noise may be partly a result 
of the constant change of neighbors; this change must be 
associated with some disruption of the balance in the 
fields. Another source of the noise should be expected in 
the errors in space differencing that are produced by in- 
convenient space distribution of the neighbors. For 
keeping this noise tendency a t  an acceptably low level, 
it was found necessary to have a fairly large average 
number of neighbors, Z. The experiments reported here 
have all been done with the value of 

p=a, arccos 1-2 - ( 3 
such as to make E equal to 30; here, N i s  the total number 
of computation points. With such a large value for E ,  
no need was felt to check whether the particular values 
of n are, a t  each reference point and time step, always 
greater than or equal to 5. 

For enabling a fast search for the neighbors, the globe 
was divided into spherical grid boxes; and a t  the beginning 
of the computation and after each displacement of the 
computation points, lists of addresses have been made of 
all the points found in particular boxes. For a specific 

reference point, then only the points found in boxes that 
are within the distance p of the reference point have been 
checked for the possibility of being neighbors. This 
procedure appeared to  be fairly fast, in the sense that it 
did not consume a major portion of the total computation 
time. 

3. TIME DIFFERENCING: THREE-LEVEL 
EXTRAPOLATION SCHEME 

It has earlier been pointed out by Matsuno (1966a) 
that a discontinuity in the grid size of a Eulerian grid can 
result in a false generation of high-frequency waves. As 
pointed out, this apparently takes place also in our case of 
an irregular distribution of computation points. For such 
situations, Matsuno recommended use of a computational 
scheme that filters out high-frequency oscillations during 
the process of time integration. His first-order accuracy 
scheme (Matsuno scheme) has since been used extensively 
in some of the general circulation studies (Mintz 1965, 
Arakawa et al. 1969). It was pointed out by Lilly (1965) 
that this scheme may possibly cause a considerable loss in 
the energy of the system; on the other hand, for the 
purpose of initialization for the primitive equations model, 
some authors felt the need for a scheme with even more 
powerful damping of the high-frequency motions (Nitta 
1969). Use of such high-frequency damping schemes is 
likely to become much more extensive with the expected 
advent of the time-continuous observations: we may then 
wish to use these schemes to speed the adjustment of the 
imbalances introduced by continuous input of the data 
into a numerical €orecast. In  view of this general interest 
and possible advantage in having a variable-damping 
scheme, a scheme that was analyzed for use in the present 
model and can have a variable damping will be described 
here in more detail. This is the scheme obtained by per- 
forming a linear time extrapolation of computed time 
derivatives to  a time value of to + aAt  where to is the value 
of time at  the beginning of the considered time step At and 
a is a parameter that we can use to control the properties 
of the scheme. 

We shall write a particular one out of eq (1) in the 
general form 

ax 
-=j( a t  x, t ), x =x( t )  . 

In  writing this, we have disregarded the coupling within 
the system (1) in exchange for the possibility of considering 
x to be complex and thus having eq (9) stand for a pair of 
eq (1). If we now use an integer subscript to denote the 
number of time steps elapsed, we can write the considered 
finite-difference version of eq (9) as 

For brevity, we shall sometimes call approximation (10) 
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TLE (three-level extrapolation) scheme. It reduces to the 
Euler (forward) scheme when a=O and to the simplified 
Adams-Bashforth scheme when a=jh. When a= 1, it  
represents a simulation of the backward difference scheme. 

If we define as the truncation error e of the considered 
scheme, the remainder on the right side of eq (10) when 
xr+, are substituted by their true values obtained 
through Taylor series expansion, we have 

~=-(~-~)f:(At)"-(g+a)f: '(At)~+ . . . . 

Thus, approximation (10) is of first-order accuracy, unless 
a=%, when its accuracy is of the second order. 

To  analyze the behavior of the error over a period of 
time, however, we have to  prescribe first the function 
f(x, t ) .  It is of particular interest to consider the case of 
the oscillation equation 

ax . z = z w x  

since it describes the linearized gravity-inertial motions 
present within eq (1). We shall do so throughout the 
remainder of this section. 

We tentatively write our finite-difference solution of 
eq (11) in the form 

X,=&XT. (12) 

Combining eq (10-12), we then see that eq (12) is the 
required finite-difference solution of eq (1 1) , provided that 

(-A+B)'/'I X=+[1 f +(A + B y 2 ]  +i*[ (1 + a ) p i  ~ 

211-Ul 
1-a 

(13) 
where 

p = w A t ,  

A=3[1- (l+~)'p'], 
and 

B=$[1+2( 1 -6a+az)p2+( 1 +a) 4 p 4 ] l/Z* 

In  eq (13), the upper signs correspond to the "physical," 
and the lower correspond to the spurious "computational 
mode" that appears through the use of the three time 
levels differencing scheme. Now, we can also write 

h=Iileio. (14) 

Since the true solution of eq (11) can be written as 

we see it appropriate to refer, as customary, to 1x1 as the 
amplification factor and to O/wAt as the relative phase 
change (per time step) of the finite-difference solution. 
For stability, it is now necessary to  have both values of 
1x1 5 1; for accuracy, it is desirable to have 1x1 and O/wAt 

of the physical mode close to unity and to have 1x1 of the 
computational mode as small as possible. 

We shall first investigate the stability and damping 
properties of the considered TLE scheme. From eq (13), 
we obtain 

' 

I X I = &[ 1 + ( 1 + a) ' p2  + B f ( A  + B )  '1' 

1--a2 5 --~p(-A+B)"']'~'. (15) 
11-4 

The right side of eq (15) is equal to unity when 

w A t = - ( -  1 1-2a ---) "' . 
a l+% 

. .  The TLE scheme is, therefore, stable for values of wAt 
equal to  or smaller than the right side of eq (16). This 
right side has its maximum value 

(wAt )  ,,,az=42(5&- 11) = 0.6006 

when 

a= (1 +dg) =0.8090. (17) 

Thus, as far as the extent of the stability range is con- 
cerned, eq (17) gives the optimum value of the parameter a. 

Amplification factors given by eq (15) for this optimum 
stability and three other particular values of a are plotted 
against wAt in figure 1. It demonstrates a favorable 
damping of the computational mode for values of a<l. 
However, the computational and physical mode curves 
meet for the value of a=l  and flip over each other for 
larger values of a, the computational mode thereby be- 
coming unstable and limiting the stability range of @At. 
Still, the stability range decreases rather slowly with the 
increase in a, and large values of a may thus be useful if 
an especially powerful damping of the high-frequency 
motions is desired. 

I t  is of interest to find the location of the minimum 
value of the greater of the amplification factors since the 
scheme has the strongest damping at  this value of wAt, and 
one may wish to  choose At so as not to exceed this maxi- 
mum damping wAt value. First, for a < l ,  one finds from 

'-i 
wAt 

FIGURE 1.-Amplification factors of scheme (lo), plotted against 
d t ,  for values of a= 0.50 (simplified Adam-Bashforth scheme), 
a = ( % ) ( l + a )  (value giving the largest stable region of oAl), 
a= 1.00 (a simulated backward scheme), and a= 1.25. 
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eq (15) that the two 1x1 = constant lines tangent to the 
1x1 curves are 

Thus, these are the extreme values of 1x1, the upper sign 
again referring to the physical mode. They occur a t  

- 17 +4pa- 29a2+2a3 F 2'13(3 - 7a+2a2)( 1 l I 2 .  

(19) 

Hence, for a<l, eq (19) with upper signs gives the maxi- 
mum damping wAt value as a function of a. It has a 
maximum of about 0.5132 a t  a=%.$. 

For a>l , maximum damping occurs a t  the intersection 
of the two 1x1 curves. This happens at  

wAt=l/(l+a). (20) 

3 - 2~ & 23/2( 1 - a )  '/' 1 

Both expressions (19) and (20) are of course valid in the 
limiting case when a= 1. 

A summary of the dcpendence of considered wAt values 
on a is given in figure 2.  Thc figurc shox-s the extent of 
the stability range, eq (16), and wAt values at which the 
considered TLE scheme has a maximum damping, eq (19) 
with upper signs for a<l and eq (20) for ~ 2 1 .  

To discuss now the accuracy of the finite-difference 
solution, me also have to consider the phase change, per 
time step, of its physical mode. Using the subscript 1 to  
denote the values that pertain to the physical mode, we 
can write this phase change as 

-+ (2+ (A+ B )  ' 91. (21) 

We want t o  compare 8' with the phase change, per time 
step, of the true solution that is equal to wAt. For that pur- 
pose, ratios of the two phase changes as functions of wAt 
are plotted in figure 3. This is done for a number of values 
of the parameter a and for comparison also for the first- 
order Matsuno scheme. 

Normally, however, me will only be concerned with the 
accuracy of the finite-diff erence solution for small values 
of wAt. Thus, we will require IX1( and t?,/wAt to be as close 
as possible to unity only when wAt is close to  zero. Figures 
1 and 3, while giving a general description of the behavior 
of and O,/wAt, are not very helpful in estimating how 
well this requirement is satisfied. To this end, considera- 
tion of their series expansions in terms of powers of 
p=wAt  is more convenient; for these, me obtain 

lh1~=1+3(1-2a)p2+. . . (22) 

STABILITY 

w A t  

0 

FIGURE Z-Curves showing the extent of the stability range of 
scheme (10) and oAL values a t  which a maximum damping occurs 
as functions of the parameter a. 

1.6 

I .4 

z 
3 
-- 1.2 
\ 

1.0 

025 050 0.75 IO0 

wnt  

FIGURE 3.-Ratios of the phase changes per time step of Anite- 
difference solutions and the true solution plotted against o A t .  
The solid curves refer to the physical mode of scheme (10) and 
values of the parameter a written by t'ne curves; the dashed 
curve refers to the first-order Matsuno scheme. 

and 
(23) e,& 1 - 4 (1 - 6a+3a2)p2+ . . . . 

Thus, the amplitude error has a minimum in case of the 
Adams-Bashforth scheme when a= )i. The phase error, 
on the other hand, has a minimum when 

and a maximum in case of the simulated backward 
scheme when a= 1. 

An appropriate estimate of the accuracy of the TLE 
scheme appears to be its comparison with the first-order 
Matsuno scheme. The amplitude and relative phase 
change expansions for this Matsuno scheme are 

Ih,l=l-$pZf . . . 
and 

eMlp=i+{p2+ . . . . 

As could have been expected, these leading terms are 
equal to  the values that thc corresponding terms in eq 
(22) and (23) take in casc of the simulated backward 
scheme. We see that, p being the same and small, the 
amplitude error of the TLE scheme is less than that of 
the Matsuno scheme for all values of O<a<l; its phase 
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error, moreover, is less than the Matsuiio scheme error 
for all reasonable values of a except for a=l .  Of course, 
p = w A t  would not normally be the same; the optimum 
choice of at appcars to be such as to obtain maximuni 
damping a t  the highcst expected frequency. Since the 
minimum amplification factor of the Matsuno scheme, 
J3/2 ~ 0 . 8 6 6 0 ,  occurs at  wAt= l@, this choice mould 
imply having At of the TLE scheme, AtTLE, shorter than 
the At of thc Matsuno scheme, AtM,  so that 

AtTLE At,/& 

if a is chosen between about 0.7 and 1. Still, since thc 
TLE scheme needs only about half as much computation 
timc per time step as does the Matsuno scheme, compu- 
tation with thc TLE scheme and this choice of time stcps 
would be about 30 percent faster. Having chosen the 
valuc of AtTtE, the intensity of damping of thc highest 
cxpcctcd frequencies can still bc adjusted within fairly 
wide limits by a suitable choice of a ;  the valuc of a=l 
would, for instance, result in about two to three times 
stronger damping of the highest frequencies than with 
the Rlatsuno scheme, while the valuc giren by eq (17) 
xi-ould already result in a damping slightly weaker Lhan 
Matsuno’s. At the same time, for low-frequency motions, 
both amplitude and phase errors of the TLE scheme 
would be significantly less than the corresponding 
h’latsuiio scheme errors. This now includes also thc a= 1 
case, since the shortening of the time step leads to an 
additional decrcase in total truncation errors, due to the 
curvcd shape of thc JX,1 and O,/wAt curves. 

A possible disadvantage of the present TLE scheme 
may be its rcquiremeiit for storage of time derivatives in 
the computer code of the model. However, in the present 
floating computation points method, this is offset largely 
by saving the need for storage of an extra set of point 
coordinates, what would have been required when using a 
stable or neutral tmo-levels scheme. 

Use of a three time levels schemc, of course, is associated 
with a need for a special starting procedure. However, 
since for reasonable values of a the computational mode of 
the TLE scheme is strongly damped, no dficulties should 
be expected if the simplest forn-ard scheme is used for 
the first time step. This was, therefore, done in the 
experiments reported here. 

Finally, it may be worth mentioning that, obviously, a 
difference exists between the application of the stability 
analysis to the present Lagrangean method and its usual 
application to Eulerian methods. The frequency w now 
refers to the individual changes and not to the local 
changes as in the Eulerian models. 

4. REMAINING DETAILS OF THE METHOD 

S U P P R E S S I O N  OF T H E  S P A C E  N O I S E  

Besides the use of the described high-frequency damping 
time-diff erencing scheme, two other noise-suppressing 

mechanisms were built into the model. While the purpose 
of the damping version of the TLE scheme was to suppress 
the small-scale features in time changes of the dependent 
variables, the purpose of the remaining two mechanisms 
was to  deal with the apparently more fundamental 
problem of the growth of the small-scale features in space 
changes of these variables. This spacc noise in the fields 
of dependent variables, as discussed at  the cnd of section 
2,  appears to be for the most part a result of the accumu- 
lation of random truncation errors in space differencing. 
In Eulerian models, accumulation of such errors is nor- 
mally prevented by the interaction of the neighboring 
grid points; each irregularity then behaves as a small- 
scale gravity-inertial wavc and is thus dispersed and 
possibly also damped in the process of time differencing. 
This may not bc possible in the present method since the 
space differencing by the least-squares fitting to a large 
number of neighbors makes the interaction of the neigh- 
boring cornputation points extremely meak-at least when 
the weight of the neighbors is not madc to depend on their 
distance from the reference point. With thc usual mech- 
anism for thc suppression of space noise thus mostly 
lacking, an alternative procedure had to be constructed. 

First, a constraint \i-as imposed 011 the magnitudes of the 
components of gradients of dependent variables, as com- 
puted using the values of the variables a t  reference points 
and their nearest neighbors. These magnitudes were not 
allou ed to surpass some arbitrarily prescribed very large 
d u e s ,  believed to  be impossible in an error-free develop- 
ment of the flo\\-. A check on their actual d u e s  was 
performed at  each computation point and time step! before 
the computation of space deriviatives; for the case that 
this constraint is rioltLted, instructions \\-ere provided to 
change the dependent variables a t  the t x o  points so as to 
reduce the gradient component to the allowed magnitude, 
\\ ithout changing the average V ~ I L W  of the variables. This, 
in fact, represented an enforcemelit of the requirement that 
the dependent variables a t  two computation points ap- 
proach each other in case that the distance between these 
points happens to approach zero. However, the experi- 
ments reported here have all been started with initial 
point distributioiis such that 110 two points \\-ere close to 
each other; as a result, only rarely did any tn-o points 
approach each other very closely, and the described nearest 
neighbor smoothing most likely, in these experiments, has 
never been performed. 

The second, less exclusive, smoothing mechanism con- 
sisted of adding a diffusion simulating term to the right 
sides of each of the three eq (1). This term had the form 

.;.(\ 
- k d ( X  - X) 

where k ,  is a constant and the circumflex represenh an 
average over all the neighbors that are within some pre- 
scribed distance p, of the reference point, this distance 
being less than the distance p defined by eq (8). I n  present 
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experiments, the distance Pa was defined so as to cover an 
area equal to one-third the area covered by the neighbor- 
defining distance p ,  and the constant kd was defined so as 
to give unity if multiplied by the time step of 4 hr. The 
effect of the terms in (25) is expected to be mostly smooth- 
ing of the space irregularities in the x fields that are formed 
by the individual values of x. Computation of the x changes 
due to the terms in (25) was not done by using the TLE 
time-differencing scheme, but rather with simple forward 
steps. 

TRAJECTORY COMPUTATIONS 

The most straightforward approach to the computation 
of trajectories of computation points is to consider that it 
consists of solving the system of equations 

ax 
dt a, cos Q -=u(x, Q, t ) ,  

(26) 

It has previously been shown (Djurib 1961, Mesinger 
1965) that the truncation errors of trajectory computations 
are rather small, even with time steps of the order of 1 hr 
or more. The present method might have high demands 
with respect to the accuracy of the trajectories; however, 
since maintenance of linear stability requires much 
shorter time steps, it  appears that even the demands for 
an extremely high accuracy of the trajectories should be 
.satisfied with any reasonable scheme. One. problem, 
though, is to avoid the polar singularities in eq (26). In 
computations on a limited domain, this has customarily 
been accomplished by transforming eq (26) into its 
counterpart on the image surface of a conformal projec- 
tion. This seems to be impractical in a global model 
since no single conformal projection can be used for the 
entire sphere. However, a simple alternative exists and 
has been used here: trajectories can be computed using 
spherical geometry, assuming that each trajectory seg- 
ment is an arc of a great circle. This procedure is especi- 
ally comfortable in the present prognostic calculation 
where it involves no space translation of the velocity 
vector. 

To display the necessary formulas, let us first observe 
that the displacement of the trajectory points is centered 
in time if performed using the wind vector 

Here, dv/dt is the time-extrapolated value of the accelera- 
tion as described in the previous section. The angular 
displacement of a trajectory point in the time step At is 
then 

a=Iv,+tIAt/a,. 

We now consider the spherical triangle with two of its 
vertices a t  the positions of this trajectory point a t  time 

levels T and T +  1 and with the third vertex at  the South 
Pole. We denote its interior angle a t  the initial position of 
this point by y ;  then 

Using the law of cosines for a spherical triangle, we can 
now write 

sin pr+l=cos a sin p7-sin a cos pr cos y 
and 

coslAhI=(cos a-sin sin vr)/(cos C P + + ~  cos pT). 

With the addition of the obvious relation 

the displayed formulas define, in general, the computation 
of the r.+l time level coordinates of the considered 
point. When ur+*=O, the considered triangle collapses 
into a line, but the first eq (27) is still valid; the second 
eq (27) is not needed in that case. Finally, another special 
case of a trajectory point coming exactly to  one of the 
Poles, or to its extreme vicinity, might be harmful; this 
was avoided by moving the point slightly away from the 
Pole should such a case tend to occur. 

TRANSFORMATION OF THE VELOCITY 
AND ACCELERATION COMPONENTS 

When a computation point is moved to its new ~ + 1  
time level position, its velocity components, the extra- 
polated acceleration contributions already added, have 
to be transformed to the new orientation of the geographi- 
cal A, Q coordinate lines. Since a one-step displacement 
is relatively smdl, we assume no change in the orientation 
of the A, 0 coordinate lines. (This is equivalent to forward 
computation of the small tan e terms in eq (1). One could, 
of course, compute their space-centered values if desired.) 
We can then compute the new u, v velocity components 
by using eq (2), (3), and 

u=u cos 8-vsin 8, 
and (28) 

v=u sin p+v cos 8. 

Parallel to this, transformation of the nonextrapolated 
acceleration components also has to be performed so that 
they can be used for time extrapolation of the acceleration 
components a t  the T + 1 time level position of the consid- 
ered point. This transformation is, of course, done in the 
same way as the velocity components transformation, 
except for the acceleration components replacing the 
corresponding velocity components in eq (28). 

5. INITIAL CONDITIONS 

A number of test computations were done with the 
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initial conditions similar to  those used by Phillips (1959) 
and Krishnamurti (1962). They are given by the stream 
function 

(29) $=-a: sin p(k,-k2 cosR cp cos Rh) 

where k, and k, are constants and R (integer) is the wave 
number. As shown by Haurmitz (1940) for the linearized 
case and by Neamtan (1946) for the nonlinear one, the 
flow pattern given by eq (29) will in a nondivergent 
barotropic atmosphere move from west to east without 
change of shape and with the angular velocity 

R( 3 + R) k, - 2 Q '= 
(l+R)(2+R) 

' 

Having a primitive equations model, we need as initial 
conditions the initial velocity components and height 
of the free surface. The velocity components equivalent 
to eq (29) are obtained by 

The height field associated with eq (29) can be determined 
by solving the balance equation; as given by Phillips 
(1959), one obtains 

where 

2(Q+k1)kz c " [ ( R ~ + ~ R + ~ ) - ( ( R + ~ ) ~ c ~ ] ,  B(cp)'(R+ 1) (R+2) 

C(cp)= ~ ~ : c " [ ( R + l ) ~ ~ -  (R+2)] ,  

and 
c=cos (p. 

It has been pointed out by Phillips that eq (29-32) 
will also be a solution of the corresponding divergent 
primitive equations system only if the constant kl  happens 
to be such that the wave is stationary. This will occur 
when 

ki=2Q/[R(3+R) 3. (33) 

If this is not so, the solution of the primitive equations 
system is unknown. Thus, it appears that the best test of 
the performance of a barotropic numerical primitive 
equations model can be made by choosing eq (33) for the 
definition of kl as originally done by Charney (1955). 
Then we know that any departures of the numerical 
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FIGURE 4.-Distribution of the height of the free surface at the 
beginning (upper map) and a t  the end (lower map) of the &day 
forecast, shown on a cylindrical meridionally equidistant projec- 
tion. The maps are printed with a shading interval of 160 gpm. 

solution from the initial fields of eq (29), (31), and (32) 
represent numerical errors. Hence, kl  was here defined by 
eq (33); the constants R and do were given the same 
values as those by Phillips and Krishnamurti, that is, 

R=4 and &,=9.8X8000 m2 s - ~ ,  

while the constant k, was defined at  about half of their 
value, that is, 

to obtain velocities more comparable to those observed 
in the atmosphere. The initial distribution of 4, obtained 
with these values of the constants, is shown in the upper 
part of figure 4. The initial distributions of u and v are 
similar to those shown in the paper by Krishnamurti, 
with u values approximately equal to half of those dis- 
played in his figure 7 and values, since they do not 
depend on kl, equal to almost exactly half of his values 
in figure 8. 
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6. RESULTS OF THE EXPERIMENTS 

FIGURE 5.-Space distribution of the computation points at the 
beginning (upper map) and at the end (lower map) of the 4-day 
forecast, shown on a cylindrical equal-area projection. The pro- 
jection is conformal at latitudes of about 45'. 

The present method, as defined in sections 2 to 4, 
involves no special choice of the initial space distribution 
of computation points, as long as each computation point 
has a sufficient initial number of neighbors. Thus, an 
initial space distribution of computation points also has 
to be prescribed. This was done by choosing a distribution 
between the random and the hexagonal one. Such quasi- 
hexagonal initial distribution of computation points was 
accomplished by placing the points a t  constant increments 
in longitude and at  random on every second of 2L equal 
intervals of the sine of latitude, going repeatedly K times 
from the South Pole to the North Pole in a chessboard 
fashion (placing the points a t  successive sweeps on odd 
and on even of the ZL intervals). Computation points 
then form an irregular K X  L point grid on an equal-area 
cylindrical projection of the globe with consecutive some- 
what slanted columns of points shifted relative to  one 
another so as to form a quasi-hexagonal pattern. A par- 
ticular space distribution of 160x25 points obtained in 
this way is shown as the upper part of figure 5; i t  was 
used for the 4000-point experiments presented here. 

A 4-day forecast was computed using the described 
method and initial conditions. It was made with 4000 
computation points, time steps of 12 niin, and time 
extrapolation parameter a equal to the value of 0.25 
(1 + &), which accomplishes the maximum stability 
range of At.  Values of the remaining numerical constants 
have aIready been given in the preceding sections. 
Besides this 4-day experiment, two shorter 1-day runs 
have been performed: one differing from the 4-day run 
only in having a coarser space resolution of 3000 points 
arranged initially in a 120x25 point grid and the other 
only in having the parameter a equal to X, that is, by 
being computed using the Adams-Bashforth time-differ- 
encing scheme. 

Results of the 4-day experiment will be illustrated 
here by a number of maps and diagrams. As first of these, 
figure 4 shows in its lower part the geopotential field a t  
the end of the 4-day period; it can be compared with the 
initial field shown in the upper map, both on a cylindrical 
meridionally equidistant projection. These maps were 
obtained by performing a space interpolation of the 
geopotential values to points of the spherical 72x46 
point grid (5' by 4" in longitude and latitude) and then 
using a usual mapping program with a 160 gpm contour 
interval. The space interpolation was done by finding 
always three nearest computation points to a particular 
spherical grid point and then fitting a linear polynomial 
to the geopotential values at these three points-with an 
additional constraint that the interpolated value must 
remain within the range between the lowest and the 
highest of the considered geopotential values. This con- 
straint had the purpose of protecting against an unfavor- 
able space distribution of the three nearest points when 
they are organized nearly along a line; otherwise, a 
meaningless result could be obtained in such a case. A 
slight amount of noise can be introduced occasionally 
into the maps by such interpolation as can be seen by 
close inspection of the upper map showing the initial 
field that contained no noise in the computation points 
data. An alternative interpolation procedure would be to  
perform a least-squares fitting to the values a t  the four 
nearest computation points; in that way, a smoothing 
effect would be obtained. 

An outstanding feature of the 4-day map is the fact that 
no phase errors can be noticed: locations of the trough and 
ridge lines appear to be exactly the same as on the initial 
map. The amount of noise present, despite all precautions, 
may seem somewhat discouraging. However, most of it 
appears in polar regions where the geopotential field was 
initially rather flat, with the lowest 8000 gpm isolines 
running along the polar lines of the projection. Thus, only 
a small occasional decrease in the geopotential heights was 
sufficient to produce noise in the map shading in these 
regions; moreover, this noise is shown on the map with 
exaggerated space dimensions due to the large area magni- 
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FIGURE 6.--Mean value of the distances from each computation 
point to its nearest neighbor as a fuiiction of time for the 4-dny 
experiment. 

fication in the vicinity of a Pole. In  other n-ords, the un- 
favorable visual irnl>rcssioi~ as to  the amount of noise 
present in the final gcopotential field is to some extcut 
deceiving. A fair amount of noise can be seen along the 
Equator \\-here thc field is also flat; but the remaining 
contour lines in regions of stronger gradients are often 
remarkably smooth. 

In figure 5, the initial (npper map) and final (lower map) 
space distribution of computation points is shown on an 
cyual-area cyliiiclrical projection so as to reflect their 
number per unit area of the globc. One can notice that, in 
the 4-day map, the points exhibit a tendcncy to organize 
dong irregular lines; this must be a consequence of the 
fact that, except for somc iioisc, 110 turbulence \vas pre- 
sent in the computed flo\v fields. A more irregular final 
distribution of points should of course be expected when 
the points arc advccted by a less orgunizcd flow. 

Starting with an initial distribution of points that is 
better than random, onc must expect i t  to deteriorate 
with time and eventually become random or possibly 11-orse 
than random--“bctter” and “v-orsc” meaning that the 
points are more and less c\-enly dispersccl than in a random 
distribution , rcspcctivcly. In  fact, somc earlier cxperimcnts 
(Mesinger 1965) have sho\\-ii that the iiondivcrgcnt part 
of an observed t\\-o-dimciisioiial atmospheric flo\\- had thc 
property of producing as well as maintaining a raiidom 
distribution of initially organized and floating particles 
while divergent flows maintained distributions worse than 
random in the above sciisc. The time rate of this process 
is of‘ interest and d l  be discussed here along with its 
effect on the accuracy of the forecast. 

For giving a statistical description of the distribution 
of our computation points, it is convenient to consider 
the mean distance from each point to its nearest neighbor. 
It has been shown by Hertz (1909) that, when a very 
large number of points is distributed at  random on a plane 
and the unit of length chosen so as to make their average 
concentration equal to 1, this mean distance will be equal 
to 0.5. If, however, the points are distributed at random 
only relative to one another but with a concentration 
that is a function of space, this mean distance has to be 
less than the random distribution value of 0.5 (Mesinger 
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FIGURE 7.-Root-mean-squcwe individual change per time step in 
the geopotential height as a function of time. The values refer 
to the 4-dag- experiment. 

1965). Finally, if the points are organized relative to one 
another, this mean distance can of course be greater; 
it is, for example, equal to &/4.&=1.0746 when the points 
are arranged into a hexagonal grid. Apparently when 
the mean nearest neighbor distance is greater, me 
might expect a better performance of a particular distri- 
bution of computation points. This mean distance was 
computed at  1-hr intervals in the 4-day experiment: its 
initial value, corresponding to the distribution shoxn in 
the upper map of figure 5, was equal to about 0.7555; 
i t  decreased rather slonrly later on, reaching a value of 
about 0.6319 at  the elid of the experiment. The obtained 
mean distances as a function of time are shown in figure 6. 
It can be compared with figure 7 in the aforementioned 
paper by the author; in that previous experiment, the 
iiondivergent part of an observed flow needed much less 
time, only about half a day, to accomplish the same de- 
crease in the mean nearest neighbor distance. The dif- 
ference, again, is due to the lack of turbulence in the 
present experiment. 

For obtaining a more quantitative idea of the amount of 
various kinds of noise present in the 4-day experiment, 
a record of the root-mean-square (rms) individual change 
per time step in the geopotential heights is shown in 
figure ’i-also based on computations at 1-hr intervals. 
Computed per unit time and divided by the rms value of 
the geopotential height, this quantity would give the 
mass-weighted rms value of div (divergence) v. Thus, 
i t  is equal to zero in the analytic solution and does not 
depend on time. 

I n  the experiment, the initial value of the rms individual 
geopotential change was equal to about 3.38 m2 s-’/12 
min; this corresponds to the value of about 0.5X10-’ s-l 
for the mentioned value of div v. Compared with the 
Pole-to-Equator change in the free-surface height of 
somewhat more than 1600 gpm, this initial error of about 
% gpm/12 min appears to be moderate; in fact, some 
caution should be exercised here since these numbers 
may already be influenced by the round-off error of the 
performed IBM single precision computations. Since 
there is no noise in the initial fields, this error-assuming 
no round-off influence-reflects only the difference be- 
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F~GURE 8.-Average height of the free surface as a function of 
time for the &day experiment. 

tween the analytic space derivatives of velocity com- 
ponents and those computed by the least-squares fitting of 
a second-degree polynomial to the values a t  available 
neighbors. Thus, it shows a combined effect of the incon- 
venient space distribution and number of neighbors and 
of the truncation of higher order terms in the polynomial. 
Some feeling for the relative significance of these two 
factors can of course be obtained through suitable experi- 
ments. For instance, the 3000-point run, with points 
arranged into a 120x25 pattern, had this initial error 
equal to 3.97 m2 r2 /12  min; this must have been mostly 
a consequence of the increased importance of the neglected 
higher order terms. On the other hand, a different organi- 
zation of the 4000 points into a 100x40 instead of 160 X25 
pattern with a 0.7997 mean nearest neighbor distance 
was found to result in a reduction of this error to the value 
of 2.75 of the same units. 

During the first day or so, the considered quantity is 
seen to undergo vigorous gravity-type oscillations with 
a period of very nearly 3 hr. These oscillations must 
be set off by small systematic differences between the 
analytic and computed space derivatives. By the end 
of about 1 day, the oscillations are damped out through the 
process of time differencing. The parallel run, differing 
from the 4-day run only by being computed with the 
Adams-Bashforth time-diff erencing scheme, did not ex- 
hibit such damping; and the oscillations persisted without 
noticeable change in amplitude throughout the l-day 
period of the experiment. 

At times after about 1 day, the rms individual geo- 
potential change seen in figure 7 settles a t  the value of 
about twice the initial one, showing the contribution of 
the random space noise in the velocity fields. After about 
2 days, a slow rise in this rms change can be noticed, 
interrupted by three irregular sudden increases. The 
gradual rise in this quantity should probably be attributed 
to the slow deterioration of the space dispersion of compu- 
tation points, and the three peaks to occasional occur- 
rences of very inconvenient configurations of neighbors. 

Performance of the model can further be analyzed by 
examination of the behavior of global integrals of a number 
of relevant physical quantities. Conservation of none of 
these integrals is formally guaranteed in the present 
method, and a change in conservative quantities thus 
reflects the effect of numerical errors or d the artificial 

smoothing mechanisms. A record of one of such quantities, 
the average height of the free surface, is shown in figure 8, 
again based on values computed a t  l-hr intervals. This 
average was obtained by using the geopotential values 
interpolated to points of the spherical 72x46 point grid, 
by interpolation described earlier in this section. The 
interpolation protects the computed average values 
against the effect of possible systematic variations in the 
space density of computation points; this protection 
seems necessary since such variations would be correlated 
with those in the height of the free surface. The time 
changes in the average free-surface height shown in 
figure 8 appear to be random and of a modest amplitude. 
The observed amplitude of less than 2.1 gpm represents 
about 0.02 percent of the total average height. The 
considered average is of course proportional to the total 
mass of the fluid. 

It may be noted that, using eq (32), one can obtain 

(34) 
where 

is the global average value of 4. With the values of 
constants given in section 5, eq (34) gives 9057.33 gpm 
for the average free-surface height. The initial value of 
9057.02 gpm entered in figure 8 happens to be slightly 
less than this "exact" value, the difference showing the 
amount of the sampling error. This exact value could 
also have been entered to  start the curve in figure 8, 
what would have further reduced its amplitude. 

Finally, a record of the average values of total, kinetic, 
and available potential energy computed also at  1-hr 
intervals is shown in figure 9. Denoting the total kinetic 
energy averaged per unit mass by K,  and the available 
potential energy averaged in the same way by A,, we have 

and 

(35) 

(36) 

where S represents the total area of the globe. I n  computing 
the values of K, and A,, shown in figure 9, these intergals 
and global average of 9 in eq (36) were substituted by 
corresponding sums and by the average of based on 
values of 4 and v2 interpolated again to  points of the 
spherical 72x46 point grid. Thus, the values obtained 
for Kl and A, were also protected against systematic 
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FIGURE 9.-Average values per unit mass of the total, kinetic, and 
available potential energy as functions of time. The solid curves 
refer to the Cday experiment; the dashed curves refer to the 
parallel 3000-point experiment, differing from the +day one only 
in the number of computation points; and the dotted curves refer 
to the parallel a= 54 (Adams-Bashforth scheme) experiment, dif- 
fering from the &day one only in the value of this parameter 
of the timedifferencing scheme. 

variations in the space density of computation points. 
Such a protection seems desirable since it appears that 
there should exist a definite correlation between these 
variations and those in the contributions to total energy 
values. However, it is this space interpolation that gives 
rise to the time noise seen in the kinetic (and thus also 
total) energy curves in figure 9; no time noise appears 
when the integrals in eq (35) are computed by taking 
simple sums of corresponding quantities over all the corn- 
putation points. Of the energy curves, the solid ones 
obviously refer to the 4-day experiment; the dashed curves 
refer to the “coarse resolution’’ 3000-point run, and the 
dotted ones to  the run performed by using the nondamp- 
ing Ad ams-Bashf orth time-diff erencing scheme. 

An outstanding characteristic of the energy curves is 
a periodic exchange between the kinetic and available 
potential energy. These oscillations are apparently brought 
forth by the truncation of the higher order terms in the 
least-squares polynomial. Namely, it would seem that in 
this way one computes pressure gradients that are pre- 
dominantly smaller, in their absolute values, than the 
analytic ones. Since the initial Coriolis forces are not 
affected by the space-differencing method, an imbalance is 
obtained such as to  set off inertia-gravity oscillations in 
which the fluid particles initially move predominantly 
toward higher free-surface heights; this is  associated 
with an increase in available potential and a decrease in 
kinetic energy. The amplitude of these oscillations should 

then increase with an increase in the neighbor-defining 
distance due to  the increased importance of the neglected 
higher order terms; this is confirmed by the dashed 
kinetic energy curve. Namely, since the average number 
of neighbors E was the same in all of the three experi- 
ments, the neighbor-defining distance of the 3000-point 
experiment was greater than that of the two 4000-point 
ones; accordingly, this 3000-point experiment exhibits 
a greater amplitude of the discussed oxcillations. I n  the 
4000-point 4-day experiment, this amplitude initially 
amounts to about 1.1 percent of the total kinetic energy 
and decreases later on. Damping in the time differencing 
and physical dispersion of the waves are responsible for 
this decrease in amplitude. The period of the oscillations 
is less than the pure inertial one, in accordance with the 
usual linear theory; see, for example, the paper by Arakawa 
(1970). 

The energy curves in figure 9 exhibit a general de- 
creasing trend, showing the loss of energy due to the 
artificial space smoothing and damping in the time 
differencing. During the 4-day experiment, the total 
kinetic energy decreases by about 3.71 percent of its 
initial value. One part of this energy is transformed into 
the available potential energy through the described 
inertia-gravity oscillations and subsequent geostrophic 
adjustment; it somewhat more than compensates for the 
loss in the latter to the existing space-time smoothing 
mechanisms, leaving the potential energy a t  a value 
slightly higher than the initial one. The remaining part 
is dissipated through the numerical smoothing processes. 

It is tempting to try estimating the relative contribu- 
tions of space smoothing and time differencing to the 
observed kinetic energy loss. One may attempt to do this 
with the help of the results of the parallel run computed 
using the Adams-Bashforth time-differencing scheme. 
This run was terminated at  the l-day time; a t  that 
moment, its loss in kinetic energy amounts only to some- 
what less than one-third of that demonstrated by the 
solid kinetic energy curve in figure 9. However, some 
caution should be exercised in interpreting this difference 
since there is a possibility that it appears partly as a 
consequence of the weak instability of the Adams-Bash- 
forth scheme. No visual sign of such instability, though, 
could be noticed by careful comparison of the two 1-day 
geopotential height maps; thus, a value for the parameter 
a smaller than the one used for the 4-day experiment 
appears preferable. 

7. CONCLUDING REMARKS 

The proposed Lagrangean method offers a number of 
distinct advantages over the conventional Eulerian tech- 
nique. We shall summarize them here: 

Formulation of the problem involves no advection terms; this 
makes the governing equations simple, free of nonlinear instability, 
and guarantees, except for truncation errors, the conservation of 
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individual properties following the motion of fluid particles. In 
other words, there is no computational dispersion in the advection 
terms. This should improve the simulation of mesoscale phenomena, 
such as fronts, jets, and intertropical convergence zones, associated 
with sharp gradients of an advected quantity. Further, this enables 
a realistic simulation of the deformation-dependent process of 
lateral diffusion. 

The simulated flow is not subjected to  systematic space changes 
in grid resolution and properties. With computation points moving 
with the fluid, a quasi-homogeneous resolution is accomplished 
without any  geometrical considerations. 

The two mentioned properties significantly reduce the amount 
of work needed to code a computer program for the model. Absence 
of considerations related to the geometry of a particular grid and 
to the treatment of advection terms relieves the programmer of a 
major effort tha t  these considerations require in a Eulerian global 
model. 

It would appear easy to accomplish a variable resolution, such 
as t o  have a higher density of computation points in regions of 
rapid spatial change in appropriate quantities. Such regions exhibit 
a strong tendency to move with the fluid and would thus maintain 
this increased resolution for an extended time. A density dependent 
neighbor-defining distance could then be used, while still observing 
the principle of property of being a neighbor having to be a reciprocal 
one. 

The model can accept information at arbitrary points in space, 
and they can be prescribed different weights, depending on their 
reliability. This seems ideally suited to the expected future global 
observation system (ICSU/IUGG 1967). 

On the other hand, a number of objections.could be 
raised : 

The present experiments showed a tendency for the appearance 
of computational noise, and artificial smoothing was needed t o  
suppress this tendency. However, the situation should be better 
when a simulation of the real atmospheric diffusion is incorporated 
into the model. 

It may be difficult or impossible to construct schemes that would 
conserve global integrals of relevant quantities. 

It seems that more computation time and more points are needed 
than in a comparable Eulerian model. The 4000-point experiments 
described here required about 50 min of the I B M  360/91 computer 
time per 1 day of simulated time. 

Finally, some uncertainty remains as to horn severe the 
performed test was; it would appear that a task of main- 
taining a stationary state, with computation points 
floating through it, is fairly demanding. Still, one feels a 
need for a more nonlinear two-dimensional test and of 
course a three-dimensional one. The amount of effort 
invested into the present method is exceedingly small 
compared to that which brought the Eulerian methods to 
the present state; this, coupled with the results of the 
present study, mould seem to highly encourage further 
investigation of the proposed method. 
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I CORRECTION NOTICE 

Vol. 98, No. 7, July 1970: p. 531, photo of fig. 3 should be interchanged with 
photo of fig. 4. I 


